Autoencoders

Autoencoders

- Feedforward networks that
 - Have a bottleneck layer with fewer dimensions than the input
 - With an output layer with the same dimensionality as the input
 - And as objective the output to reconstruct the input

Autoencoders

- There is an encoder network: v = h(Wx)
- And a decoder network: x' = h(W'v)
- The weights are often tied together: $W^T = W'$
- If there is no bottleneck and no regularization
 - → no learning
 - The input can be simply copied to the output

Denoising autoencoders

- Add some noise to the input: $\tilde{x} = x + \varepsilon$
- \circ Then ask the autoencoder to reconstruct the original input x regardless
- Learns more generalizable embeddings

Deep autoencoders

- Neural networks that learn to embed data on some form of nonlinear manifold
- Compared to PCA, they can learn better embeddings
 - Due to the nonlinearities

Applications

- Autoencoders are used for visualization
- Autoencoders are used to learn compression
 - Similar to PCA
 - In fact, linear autoencoders learn the same subspace as PCA
- Autoencoders can be used for pre-training
 - No need for labelled data

- Deep autoencoders are not probabilistic and not generative models
 - They can reconstruct the input
 - They cannot generate new data points

For more nice insights check R. Grosse's slides