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Autoencoders

o Feedforward networks that
- Have a bottleneck layer with fewer dimensions than the input

> With an output layer with the same dimensionality as the input
> And as objective the output to reconstruct the input
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Autoencoders

o There is an encoder network: v = h(Wx)
o And a decoder network: x' = h(W'v)
o The weights are often tied together: WI' = W’

o If there is no bottleneck and no regularization
° = no learning

> The input can be simply copied to the output
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Denoising autoencoders

o Add some noise to the input: ¥ = x + ¢
o Then ask the autoencoder to reconstruct the original input x regardless

o Learns more generalizable embeddings
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Deep autoencoders

o Neural networks that learn to embed data on some form of nonlinear manifold

o Compared to PCA, they can learn better embeddings
> Due to the nonlinearities
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Applications

o Autoencoders are used for visualization

o Autoencoders are used to learn compression
> Similar to PCA

> In fact, linear autoencoders learn the same subspace as PCA

o Autoencoders can be used for pre-training
> No need for labelled data

o Deep autoencoders are not probabilistic and not generative models
> They can reconstruct the input

> They cannot generate new data points

For more nice insights check R. Grosse’s slides
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http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/slides/lec20.pdf

